
 Enhancing Machine Learning Based SQL Injection Detection
Using Contextualized Word Embedding
Janet Zulu

Texas A&M University-San Antonio
San Antonio, Texas, USA
jzulu01@jaguar.tamu.edu

Bonian Han
Hangzhou Dianzi University
Hangzhou, Zhejiang, China
bonian985@gmail.com

Izzat Alsmadi
Texas A&M University-San Antonio

San Antonio, Texas, USA
ialsmadi@tamusa.edu

Gongbo Liang
Texas A&M University-San Antonio

San Antonio, Texas, USA
gliang@tamusa.edu

ABSTRACT
SQL injection (SQLi) attacks continue to severely threaten applica-
tion security, allowing malicious actors to exploit web input and
manipulate an application’s database with malicious SQL code. This
work explores the possibility of building effective SQLi detectors
through machine learning. Specifically, we investigate the impact
of contextualized and non-contextualized embedding methods for
converting SQL queries into vector space. Our results demonstrate
the superiority of the contextualized embedding method, achieving
consistent accuracy above 99% across various classification algo-
rithms and reducing model training time by 31 times. In addition,
the analysis of reliability diagrams indicates that contextualized
embeddings provide better model calibrations. These findings un-
derscore the significance of contextualized word embeddings in
enhancing the performance and reliability of SQLi detection models.

CCS CONCEPTS
• Security and privacy; • Information systems; • Comput-
ing methodologies → Natural language processing; Machine
learning;

KEYWORDS
Cyber security, artificial intelligence, text embeddings.

ACM Reference Format:
Janet Zulu, Bonian Han, Izzat Alsmadi, and Gongbo Liang. 2024. Enhancing
Machine Learning Based SQL Injection Detection Using Contextualized
Word Embedding. In 2024 ACM Southeast Conference (ACMSE 2024), April
18–20, 2024, Marietta, GA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3603287.3651187

1 INTRODUCTION
The prevalence of SQL injection (SQLi) attacks continues to pose
a significant threat to application security. These attacks allow

This work is licensed under a Creative Commons Attribution-NonCommercial 
International 4.0 License.
ACMSE 2024, April 18–20, 2024, Marietta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0237-2/24/04.
https://doi.org/10.1145/3603287.3651187

Figure 1: Illustration of Using Machine Learning Model to
Prevent SQLi Attacks

malicious actors to manipulate an application’s database by insert-
ing malicious SQL code through web input, leading to potentially
devastating consequences. From unauthorized data access and mod-
ification to compromising backend infrastructure, the impacts of
successful SQLi attacks are far-reaching [8].

Current SQLi detection methods predominantly rely on manu-
ally defined features, but their ability to handle the ever-evolving
range of real-world attacks remains a concern [14, 25, 31]. Machine
learning (ML) approaches, such as neural networks (NNs), learn
task specific features directly from extensive training data offering
potential advantages over conventional hand-crafted features in
terms of robustness and precision [12, 20, 34, 39]. As a result, ML
models show promise as effective tools for SQLi detection, such
as [21, 28].

The conceptual framework of employing ML models to combat
SQLi attacks involves passing user input through a pre-trained ML
model to detect the presence of malicious code, and only inputs
deemed safe are subsequently forwarded to the web API server
(Figure 1). However, developing such a model involves carefully
choosing building blocks in two folds. First, since SQL queries are
textual data, which are not understandable by MLmodels as-is, they
need to be converted to numerical vectors throughword embedding.
Then, the vectors are fed into a detection model comprising feature-
learning and decision-making components. There aremany possible
choices for each step. The multitude of choices within each of these
decisions can be overwhelming.

2024 ACM Southeast Conference – ACMSE 2024 – Session 2: Short Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

211

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603287.3651187&domain=pdf&date_stamp=2024-04-27


 
 
 

In this paper, we focus on examining the influence of contex-
tual and non-contextual word embedding methods on the perfor-
mance of variousML-based SQLi detectionmodels, including neural
networks, k-nearest neighbor, random forest, and logistic regres-
sion. Our experimental results reveal that the use of contextual
embedding methods not only enhances the model training effi-
ciency (achieving 31 times or more faster training) but also leads
to a notable improvement in neural network calibration, a critical
aspect often ignored in evaluation [7, 13, 16].

The subsequent sections of this paper introduces the common
building blocks of ML-based SQLi detector and the ones used in
this study (Section 2), a comprehensive evaluation is presented
(Section 3), and conclude with discussions and insights (Section 4).

2 MACHINE LEARNING-BASED SQLI
DETECTOR

Since the SQLi attackers need to inject malicious code into textual
SQL queries, SQLi detection may be modeled as a natural language
binary classification problem, using supervised training approach.
Specifically, each training sample is represented as a two-tuple
{𝑥,𝑦}, with 𝑥 is the textual input and 𝑦 is the label, indicating the
presents of SQL injection. The detection process is represented as:

(𝑦, 𝑝) = ℎ(𝑥𝑣), (1)

where ℎ(·) is a ML model, such as those in Section 2.2, 𝑥𝑣 is the vec-
tor representation of 𝑥 that is generated using a non-contextualized
(Section 2.1.1) or contextualized embedding method (Section 2.1.2) ,
𝑦 is the predicted label, and 𝑝 is the predicted probability. Ideally, 𝑦
is equal to 𝑦 and 𝑝 is the true data distribution (𝑝). A perfectly cali-
brated classification model should present the following property:

P (𝑦 = 𝑦 |𝑝 = 𝑝) = 𝑝,∀𝑝 ∈ [0, 1], (2)

where P(·|·) indicate the conditional probability.

2.1 Word Embedding Methods
The initial step of building a classification model for textual input is
to convert the raw text into vector representations using word em-
bedding. Thesemethods can be broadly categorized into two groups:
non-contextualized embedding and contextualized embedding.

2.1.1 Non-contextualized Embedding. Non-contextualized word
embedding generates fixed vector representations for each word in
the vocabulary without considering the context in which the word
appears in a sentence or document. Popular non-contextualized
embedding methods include Bag-of-Words (BoW), Word2Vec [23],
and more. These methods typically use co-occurrence statistics or
predict words based on their neighboring words in a large corpus
to create word embeddings. As a result, the embeddings remain the
same regardless of the sentence or document they appear in, making
them computationally efficient and straightforward to implement.

In our work, we adopt the Bag-of-Words model as our non-
contextualized method since it is a fundamental technique, which
is widely used in natural language processing (NLP) [11, 33]. In
this approach, text is treated as an unordered collection of words
or n-grams, and the frequency of each word is used to represent
the text. While the BoW model does not capture word order or
contextual information, it remains a popular choice for scenarios

where word frequency and occurrence information suffice for the
task at hand, offering a balance between efficiency and simplicity.

2.1.2 Contextualized Embedding. Contextualized word embedding
methods generate word representations that adapt to the context
in which words appear, resulting in dynamic embeddings sensitive
to surrounding words [4]. This contextualization enables the em-
beddings to capture subtle nuances in word meaning and resolve
ambiguities in polysemous words based on their context.

RoBERTa [41] is one of the prominent and influential models for
NLP contextualized embedding. RoBERTa, short for "A Robustly
Optimized BERT Pretraining Approach," is a variant of BERT [4]
that enhances bidirectional context modeling during pretraining,
utilizing the transformer [32] architecture. A pretrained RoBERTa
model may be finetuned for various tasks without requiring too
much effort [6, 41, 42]. In this study, we use RoBERTa as our con-
textualized embedding method for SQLi detection.

2.2 Machine Learning Models
Given the natural of SQLi being modeled as a binary classification
task, it can be trained using a conventional machine learning model
(Section 2.2.1) or neural network model (Section 2.2.2).

2.2.1 Conventional Machine Learning Model. In this work, we uses
k-nearest neighbor (KNN), logistic regression, and random forest
as conventional machine learning models.

KNN is a simple and effective algorithm used for classification
tasks, based on the principle that similar data points are more likely
to belong to the same class [24]. In our case, for each new textual
input 𝑥 , KNN identifies the𝐾 nearest training samples and classifies
𝑥 based on the majority class among its neighbors. KNN is easy to
implement and interpret, but its performance might be sensitive to
the choice of 𝐾 and the distance metric.

Logistic Regression is a widely used statistical method for binary
classification [36]. It models the relationship between the input
features and the probability of the positive class (SQL injection
present) using a logistic function. The model can be trained using
optimization techniques to find the best parameters that minimize
the logistic loss. Logistic Regression is computationally efficient, in-
terpretable, and can handle both linear and non-linear relationships
between features and the target variable [9].

Random Forest [2] is an ensemble learning method that com-
bines multiple decision trees [37] to make predictions. Each tree
is trained on a random subset of the data with random feature
subsets, and the final prediction is determined by aggregating the
predictions of individual trees. Random Forest is robust against
overfitting, works well with high-dimensional data, and can cap-
ture complex relationships in the data. It is less sensitive to the
choice of hyperparameters compared to single decision trees [1].

2.2.2 Neural Network Model. In recent years, the remarkable suc-
cess of neural networks (NNs) has captured considerable attention
across diverse domains, ranging from medical imaging [19, 22, 38,
43] to astrophysics [15, 18, 45, 46], and roadway safety [17, 29, 40].
Inspired by their impressive capabilities, we also incorporated neu-
ral networks as one of the classification models in our SQL injection
detection work.

Enhancing Machine Learning Based SQL Injection Detection Using Contextualized Word Embedding 
Zulu, Han, Alsmadi, Liang

212



 
 
 

Table 1: Details of the Neural Network Architecture

Layer CountVectorizer RoBERTa
Input 40,933 768

FC1
256 128
ReLU ReLU

Batch Norm Batch Norm

FC2

256 128
Dropout (p=0.2) Dropout (p=0.2)

ReLU ReLU
Batch Norm Batch Norm

FC3 2 2
Parameter Count 10,546,434 115,714

In this study, we designed and trained neural networks for feature
learning and decision making. This process involves passing the
data through multiple layers of interconnected neurons, where each
layer extracts increasingly abstract representations of the input.
For our specific problem, we employed a deep feedforward neu-
ral network, commonly known as a multi-layer perceptron (MLP)
model. The MLP consists of an input layer that takes the textual
input 𝑥 and processes it through hidden layers, ultimately leading
to the output layer that predicts the probability of SQL injection
(𝑦). The choice of the number of hidden layers and the number of
neurons in each layer was guided by experimentation to strike the
right balance between model complexity and generalization. The
specific structures of two NN models used in this study are shown
in Table 1.

To train the neural network, we utilized a supervised learning
approach with labeled training samples {𝑥,𝑦}. During training, the
network learns the optimal weights and biases by minimizing the
binary cross-entropy loss (BCE) [5]:

𝐵𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑝𝑖 ) + (1 − 𝑦) · (𝑙𝑜𝑔(1 − 𝑝𝑖 ). (3)

Through rigorous experimentation and performance evaluation,
we compared the neural network’s performance with the other
classification algorithms (K-Nearest Neighbors, Logistic Regression,
and Random Forest). This comprehensive analysis allowed us to
determine which model and embedding method achieved the most
robust and accurate SQL injection detection results.

3 EXPERIMENTS AND RESULTS
3.1 Experiment Setup
This study was conducted using Google Colaboratory with 12GB
of RAM and a Nvidia Tesla T4 GPU with 16GB of memory. The
CountVectorizermethod from the scikit-learn library [3] served
as the BoW embedding method. The RobertaModel, Specifically
roberta-base, from HuggingFace [35] was utilized for contextual-
ized embedding.

The SQL queries were directly fed into CountVectorizer or
roberta-base for the embedding generation. No data prepossess-
ing was performed on the raw SQL queries.

Table 2: The Embedding Space of Different Methods

CountVectorizer RoBERTa
40,933 768

Table 3: Details of the Dataset

Dataset Size 64,335
Positive/Negative Samples 22,763 / 41,572

Vocabulary Size 40,933
Train/Val/Test Split 46,482 / 8,203 / 9,650

The BoW embedding was fitted on the training and validation
sets, resulting in an embedding space of 40,933. For the contextu-
alized embedding, we directly used the HuggingFace pre-trained
weights of RoBERTa, resulting in a feature space of 768 for each
sample (Table 2).

To compare the performance of the two embedding methods,
we trained eight machine learning models using four classifica-
tion algorithms: logistic regression, random forest, k-nearest neigh-
bor, and multi-layer perceptron (neural network). The logistic re-
gression, random forest, and KNN models were directly loaded
from the scikit-learn library and trained on the CPU. In con-
trast, the multi-layer perceptron models were implemented us-
ing the PyTorch library [26] and trained on the GPU. We use the
default parameters for the logistic regression model; we set the
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 5 and 𝑙𝑒𝑎𝑓 _𝑠𝑖𝑧𝑒 = 15 for random forest; and we set
𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 25 for the KNN model. The setup for the multi-layer
perceptron models is detailed in Table 1.

3.2 Dataset
A SQLi dataset from Kaggle1 is used in this project. The dataset con-
sists of three subsets, totaling 64, 645 samples. After combining the
subsets, we identified and removed 310 samples that lacked proper
labels, resulting a dataset of 64,335 labeled instances with 41, 572
being negative cases and 22, 763 being positive cases (Table 3). We
randomly divided the dataset into training, validation, and test sets,
approximately in a 72 : 13 : 15 ratio.

The dataset consists of 40,933 unique tokens (words). The sam-
ples in the dataset exhibit a wide range of lengths, varying from
1 token to 5,370 tokens, with the majority of samples being less
than 100 tokens in length. Figure 2 depicts the histograms of the
sample length distribution, displaying both the probability density
function (PDF) and cumulative distribution function (CDF).

3.3 Evaluation Metrics
Given the binary classification nature of the task, we evaluate model
performance using accuracy (Acc), F1 score (F1), Precision, and
Recall. The accuracy is calculated with the following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (4)

1https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset

2024 ACM Southeast Conference – ACMSE 2024 – Session 2: Short Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

213



 
 
 

Figure 2: Histograms of the Sample Length Distribution

where TP is the True Positive, TN is the True Negative, FP is the
False Positive, and FN is the False Negative.

The precision is calculated by the following:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 . (5)

The recall is calculated by the following:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 . (6)

The F1-score is calculated by the following:

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 . (7)

In addition, we also assess the model’s training efficiency in
seconds and model calibration using reliability diagrams and mean
calibration error.

Reliability diagrams are graphical representations of the cali-
bration quality of a classification model. These diagrams divide
the predicted probabilities into bins and plot the average predicted
probability against the empirical probability (the actual proportion
of positive outcomes) for each bin. An ideal calibration is reflected
by points close to the diagonal line on the diagram [7]. Mean cal-
ibration error is calculated as the difference between the model
accuracy and the predicted mean probability based on Equation 2,
i.e., the mean differences between the bins and the diagonal line
for a diagram.

3.4 SQLi Detection Performance
Table 4 presents the performance of the eight SQLi detectionmodels.
The models using contextualized embedding (RoBERTa) exhibit
consistent performance, achieving accuracy above 99%, with the
highest accuracy of 99.61% attained by logistic regression. It is
possible to still pushing the performance higher by tuning the
hyperparameters or increasing the model complexity of the multi-
layer perceptron and random forest models. Since all models already
achieve accuracy above 99%, we decided not to focus on pushing the
accuracy further, as it would not yield substantial practical gains.

On the other hand, the table reveals significant disparities in
the performance of the BoW embedding (CountVectorizer) mod-
els. While the multi-layer perceptron model achieves above 99%
accuracy, other models show considerable variation. For instance,
the random forest model achieves only 67.62% accuracy, barely sur-
passing random guessing. Precision and recall scores highlight that

the random forest model is heavily biased towards negative classes.
We attribute this performance drop to the large BoW embedding
space size, which drastically increases computation requirements
and necessitates more complex models for effective classification.

Another drawback of the BoW embedding is the large embed-
ding space increases the training time complexity dramatically. For
instance, it only takes 6 seconds to train a multilayer perceptron
model using contextualized embedding for 10 epochs. However,
the time increases over 31 times when training a multilayer per-
ceptron model to achieve a similar performance using the BoW
embedding. In addition, the large embedding space also requests
a unanimous amount of computational power and high memory
consumption. In fact, the training of logistic regression and KNN
cannot be completed due to the high memory consumption

3.5 Neural Network Calibration
Recent advances in deep neural networks have had a profound
impact on numerous research domains, such as [30, 44]. While re-
searchers continuously strive to achieve higher classification model
performance, uncertainty quantification is often overlooked. Never-
theless, quantifying uncertainty in neural networks is crucial since
they are often overconfidence in their prediction [7, 16, 27], which is
known as miscalibration that may lead to significant consequences
in the real-world [10, 13].

Figure 3 shows the reliability diagrams of the CountVectorizer
trained model (left), the RoBERTa trained model (middle), and the
direct comparison of the two models (right). Ideally, all the bins in
a reliability diagram should align on the diagonal line, indicating
perfect calibration. While none of the models achieve perfect cali-
bration, the model trained with CountVectorizer performs worse
than the RoBERTa model. Specifically, it severely underestimates
the probabilities of samples falling within the median probability
bins (i.e., bins of 0.5 and 0.6).

To quantify the calibration performance, we computed the mean
calibration error, which is the mean differences between the bins
and the diagonal line for each diagram. The results show that the
RoBERTa trained model has a mean calibration error of 0.1664,
while the CountVectorizer trained model has a mean calibration
error of 0.1925, which is about 16% higher than its counterpart.
Both the reliability diagrams and mean calibration error indicate
that the RoBERTa model achieves better calibration compared to
the CountVectorizer model.

4 DISCUSSION AND CONCLUSION
In this study, we compared the performance of SQL injection (SQLi)
detection models using both contextualized and non-contextualized
word embeddings. Specifically, we utilized the RoBERTa model
as our contextualized embedding method and the Bag-of-Words
as our non-contextualized method, training eight machine learn-
ing detection models. The results demonstrated the superiority of
RoBERTa, achieving consistent performance with accuracy above
99% across various classification algorithms, while significantly
reducing model training time by 31 times.

The analysis of the reliability diagrams further revealed that
RoBERTa’s contextualized embeddings provided better calibration
compared to CountVectorizer’s embeddings. The RoBERTa trained

Enhancing Machine Learning Based SQL Injection Detection Using Contextualized Word Embedding 
Zulu, Han, Alsmadi, Liang

214



 
 
 

Table 4: Model Performance Across Different Classification Algorithms and Embedding Methods

Embedding Method ML Model Accuracy F1 Score Precision Recall Training Time

CountVectorizer

Multilayer Perceptron 0.9907 0.9870 0.9891 0.9850 194
Random Forest 0.6762 0.1510 1.0000 0.0817 211

Logistic Regression Models are not trainable due to high memory consumption.K-Nearest Neighbor

RoBERTa

Multilayer Perceptron 0.9907 0.9870 0.9901 0.9840 6
Random Forest 0.9801 0.9712 0.9923 0.9509 59

Logistic Regression 0.9961 0.9944 0.9979 0.9909 8
K-Nearest Neighbor 0.9965 0.9950 0.9982 0.9918 40

Figure 3: ReliabilityDiagrams of theMultilayer PerceptionModelswithCountVectorizer Embedding (Left), RoBERTaEmbedding
(Middle), and a Direct Comparison (Right)

model exhibited closer alignment of the reliability diagram bins to
the diagonal line, indicating more accurate probability predictions.

Our findings emphasize the importance of contextualized word
embeddings, such as RoBERTa, in enhancing the performance and
reliability of SQLi detection models. RoBERTa’s ability to capture
contextual information allows it to effectively handle nuances
in word meaning and disambiguate polysemous words, leading
to higher accuracy and better calibration compared to the non-
contextualized CountVectorizer.

However, we acknowledge that the time complexity evaluated in
this study focuses solely on model training and does not consider
the pre-training process of the contextualized embedding method.
Additionally, due to RoBERTa’s larger model size, its embedding
process may require more computational resources than Bag-of-
Words.

In future work, it would be beneficial to explore methods that
mitigate the computational overhead of contextualized embeddings,
making them more feasible for practical applications. Furthermore,
investigating other state-of-the-art contextualized embedding tech-
niques and their impact on the performance and calibration of SQLi
detection models could provide valuable insights.

Overall, this study contributes to our understanding of the role
of word embeddings in SQLi detection and underscores the signifi-
cance of considering both accuracy and uncertainty quantification
when designing automated decision-making systems.

REFERENCES
[1] Gérard Biau. 2012. Analysis of a Random Forests Model. The Journal of Machine

Learning Research 13 (2012), 1063–1095.
[2] Leo Breiman. 2001. Random Forests. Machine learning 45 (2001), 5–32.
[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, et al. 2013. API Design for Machine Learning
Software: Experiences from the Scikit-Learn Project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning. Prague, Czech Republic, 108–
122.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[5] Irving John Good. 1952. Rational Decisions. Journal of the Royal Statistical Society:
Series B (Methodological) 14, 1 (1952), 107–114.

[6] Jesus Guerrero, Gongbo Liang, and Izzat Alsmadi. 2023. Adversarial Text Pertur-
bation Generation and Analysis. In 2023 3rd Intelligent Cybersecurity Conference
(ICSC). IEEE, San Antonio, USA, 67–73.

[7] Chuan Guo, Geoff Pleiss, Yu Scn, and Kilian Q Weinberger. 2017. On Calibration
of Modern Neural Networks. In The Thirty-fourth International Conference on
Machine Learning. Sydney, Australia, 1321–1330.

[8] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A Classification
of SQL-Injection Attacks and Countermeasures. In Proceedings of the IEEE inter-
national symposium on secure software engineering, Vol. 1. IEEE, Washington DC,

2024 ACM Southeast Conference – ACMSE 2024 – Session 2: Short Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

215



 
 
 

USA, 13–15.
[9] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied

Logistic Regression. Vol. 398. John Wiley & Sons.
[10] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. 2011. Cali-

brating Predictive Model Estimates to Support Personalized Medicine. Journal of
the American Medical Informatics Association 19, 2 (2011), 263–274.

[11] Krishna Juluru, Hao-Hsin Shih, Krishna Nand Keshava Murthy, and Pierre Elnaj-
jar. 2021. Bag-of-Words Technique in Natural Language Processing: A Rrimer
for Radiologists. RadioGraphics 41, 5 (2021), 1420–1426.

[12] Kazuma Kobayashi, Mototaka Miyake, Masamichi Takahashi, and Ryuji
Hamamoto. 2021. Observing Deep Radiomics for the Classification of Glioma
Grades. Scientific Reports 11, 1 (2021), 1–13.

[13] Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018. Trainable Calibration
Measures for Neural Networks from Kernel Mean Embeddings. In The Thirty-
fourth International Conference on Machine Learning. Stockholm, Sweden, 2810–
2819.

[14] Qi Li, FangWang, JunfengWang, andWeishi Li. 2019. LSTM-Based SQL Injection
Detection Method for Intelligent Transportation System. IEEE Transactions on
Vehicular Technology 68, 5 (2019), 4182–4191.

[15] Gongbo Liang, Yuanyuan Su, Sheng-Chieh Lin, Yu Zhang, Yuanyuan Zhang,
and Nathan Jacobs. 2020. Optical Wavelength Guided Self-Supervised Feature
Learning for Galaxy Cluster Richness Estimate. In Neural Information Process-
ing Systems (NeurIPS) Workshop on Machine Learning and the Physical Sciences.
Virtual.

[16] Gongbo Liang, Yu Zhang, Xiaoqin Wang, and Nathan Jacobs. 2020. Improved
Trainable Calibration Method for Neural Networks on Medical Imaging Classifi-
cation. In British Machine Vision Conference (BMVC). Manchester, England.

[17] Gongbo Liang, Janet Zulu, Xin Xing, and Nathan Jacobs. 2023. Unveiling Roadway
Hazards: Enhancing Fatal Crash Risk Estimation Through Multiscale Satellite
Imagery and Self-Supervised Cross-Matching. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 17 (2023), 535–546.

[18] Sheng-Chieh Lin, Yuanyuan Su, Gongbo Liang, Yuanyuan Zhang, Nathan Jacobs,
and Yu Zhang. 2022. Estimating Cluster Masses from SDSS Multiband Images
with Transfer Learning. Monthly Notices of the Royal Astronomical Society 512, 3
(2022), 3885–3894.

[19] Liangliang Liu, Ying Wang, Jing Chang, Pei Zhang, Gongbo Liang, and Hui
Zhang. 2022. LLRHNet: Multiple Lesions Segmentation Using Local-Long Range
Features. Frontiers in Neuroinformatics 16 (2022), 859973.

[20] Liangliang Liu, Pei Zhang, Gongbo Liang, Shufeng Xiong, Jianxin Wang, and
Guang Zheng. 2023. A Spatiotemporal Correlation Deep Learning Network for
Brain Penumbra Disease. Neurocomputing 520 (2023), 274–283.

[21] Srishti Lodha and Atharva Gundawar. 2022. SQL Injection and Its Detection
Using Machine Learning Algorithms and BERT. In International Conference on
Cognitive Computing and Cyber Physical Systems. Springer, 3–16.

[22] Radu Paul Mihail, Gongbo Liang, and Nathan Jacobs. 2019. Automatic Hand
Skeletal Shape Estimation from Radiographs. IEEE Transactions on Nanobioscience
18, 3 (2019), 296–305.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
Advances in Neural Information Processing Systems 26 (2013).

[24] Antonio Mucherino, Petraq J Papajorgji, Panos M Pardalos, Antonio Mucherino,
Petraq J Papajorgji, and Panos M Pardalos. 2009. K-Nearest Neighbor Classifica-
tion. Data Mining in Agriculture (2009), 83–106.

[25] Mohammed Nasereddin, Ashaar Alkhamaiseh, Malik Qasaimeh, and Raad Al-
Qassas. 2021. A Systematic Review of Detection and Prevention Techniques of
SQL Injection Attacks. Information Security Journal: A Global Perspective (2021),
1–14.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, et al. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. InAdvances in Neural Information Processing Systems 32. Curran
Associates, Inc., Vancouver, Canada, 8024–8035.

[27] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey
Hinton. 2017. Regularizing Neural Networks by Penalizing Confident Output
Distributions. arXiv:1701.06548 (2017).

[28] S Pooja, CB Chandrakala, and Laiju K Raju. 2022. Developer’s Roadmap to Design
Software Vulnerability Detection Model Using Different AI Approaches. IEEE
Access 10 (2022), 75637–75656.

[29] Weilian Song, Scott Workman, Armin Hadzic, Xu Zhang, Eric Green, Mei Chen,
Reginald Souleyrette, and Nathan Jacobs. 2018. Farsa: Fully Automated Roadway
Safety Assessment. In 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, Lake Tahoe, USA, 521–529.

[30] Jiawei Tang, Fengbo Zheng, Gongbo Liang, and Lifen Jiang. 2023. Utilize Mul-
tichannel Attention Amplification Fusion for Skin Disease Diagnosis. In Fifth
International Conference on Computer Information Science and Artificial Intelli-
gence (CISAI 2022), Vol. 12566. SPIE, Chongqing, China, 853–858.

[31] Peng Tang, Weidong Qiu, Zheng Huang, Huijuan Lian, and Guozhen Liu. 2020.
Detection of SQL Injection Based on Artificial Neural Network. Knowledge-Based
Systems 190 (2020), 105528.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention is All You
Need. In Advances in Neural Information Processing Systems, Vol. 30. Long Beach,
USA.

[33] Tomasz Walkowiak, Szymon Datko, and Henryk Maciejewski. 2019. Bag-of-
Words, Bag-of-Topics and Word-to-Vec Based Subject Classification of Text Doc-
uments in Polish – A Comparative Study. In Contemporary Complex Systems
and Their Dependability: Proceedings of the Thirteenth International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX, July 2-6, 2018, Brunów,
Poland 13. Springer, 526–535.

[34] Xiaoqin Wang, Gongbo Liang, Yu Zhang, Hunter Blanton, Zachary Bessinger,
and Nathan Jacobs. 2020. Inconsistent Performance of Deep Learning Models on
Mammogram Classification. Journal of the American College of Radiology 17, 6
(2020), 796–803.

[35] Thomas Wolf et al. 2019. HuggingFace’s Transformers: State-of-the-Art Natural
Language Processing. arXiv:1910.03771 (2019).

[36] Raymond E Wright. 1995. Logistic Regression. (1995).
[37] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi

Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, Philip S Yu, et al. 2008. Top
10 Algorithms in Data Mining. Knowledge and Information Systems 14 (2008),
1–37.

[38] Xin Xing, Gongbo Liang, Yu Zhang, Subash Khanal, Ai-Ling Lin, and Nathan
Jacobs. 2022. Advit: Vision Transformer on Multi-Modality PET Images for
Alzheimer Disease Diagnosis. In 2022 IEEE 19th International Symposium on
Biomedical Imaging (ISBI). IEEE, Kolkata, India, 1–4.

[39] Xin Xing, Muhammad Usman Rafique, Gongbo Liang, Hunter Blanton, Yu
Zhang, Chris Wang, Nathan Jacobs, and Ai-Ling Lin. 2023. Efficient Training
on Alzheimer’s Disease Diagnosis with Learnable Weighted Pooling for 3D PET
Brain Image Classification. Electronics 12, 2 (2023), 467.

[40] Zhexiao Xiong, Feng Qiao, Yu Zhang, and Nathan Jacobs. 2023. StereoFlowGAN:
Co-training for Stereo and Flowwith Unsupervised Domain Adaptation. In British
Machine Vision Conference (BMVC). Aberdeen, Scotland.

[41] Zhuo Xu. 2021. RoBERTa-wwm-ext Fine-Tuning for Chinese Text Classification.
arXiv preprint arXiv:2103.00492 (2021).

[42] Guang Yang, Yanlin Zhou, Chi Yu, and Xiang Chen. 2021. DeepSCC: Source Code
Classification Based on Fine-Tuned RoBERTa. arXiv preprint arXiv:2110.00914
(2021).

[43] Qi Ying, Xin Xing, Liangliang Liu, Ai-Ling Lin, Nathan Jacobs, and Gongbo
Liang. 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis:
An Ensemble Model Using Imagery and Genetic Features. In 2021 43rd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE, Guadalajara, Mexico, 3586–3591.

[44] Yu Zhang, Gongbo Liang, and Nathan Jacobs. 2022. Dynamic Feature Alignment
for Semi-Supervised Domain Adaptation. In British Machine Vision Conference
(BMVC). London, England.

[45] Yu Zhang, Gongbo Liang, Yuanyuan Su, and Nathan Jacobs. 2021. Multi-Branch
Attention Networks for Classifying Galaxy Clusters. In 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE, Milan, Ital, 9643–9649.

[46] JA ZuHone, DJ Barnes, NB Jacobs, WR Forman, PEJ Nulsen, RP Kraft, et al. 2020.
A Deep Learning View of the Census of Galaxy Clusters in Illustristng. Monthly
Notices of the Royal Astronomical Society 498, 4 (2020), 5620–5628.

Enhancing Machine Learning Based SQL Injection Detection Using Contextualized Word Embedding 
Zulu, Han, Alsmadi, Liang

216




