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Abstract—Neural network model calibration is crucial in
medical imaging, where accurate probabilistic predictions are
essential for informed decision-making. Existing calibration tech-
niques often introduce additional complexity and may not fully
capture the inherent uncertainty associated with the tasks. To
address these challenges, we propose a novel approach based
on probabilistic embedding that models uncertainty through a
Gaussian distribution. By embedding the model’s predictions into
a probabilistic space, the proposed method enables effective un-
certainty quantification. We demonstrate the effectiveness of our
approach on multiple medical imaging tasks. The experimental
result shows our method outperforms existing techniques in terms
of both calibration and accuracy.

Index Terms—predictive modeling, classification, neural net-
work, deep learning, uncertainty estimation, trustworthy ai.

I. INTRODUCTION

Medical imaging, a cornerstone of modern healthcare, is
heavily used for diagnosis, treatment planning, and prognosis
estimation [1]–[4]. Over the past decade, numerous deep neu-
ral network models have been developed for medical imaging
tasks, ranging from image processing [5]–[7] to diagnosis [8]–
[10]. While neural network models achieve impressive perfor-
mance in virtually every domain, such as cybersecurity [11]–
[13], public transportation [14]–[16], and astrophysics [17]–
[19], they often suffer from overconfidence or underconfi-
dence, leading to potential misinterpretations [20]–[23]. This
issue is known as model miscalibration, particularly critical in
medical contexts where accurate probabilistic predictions are
essential for informed decision-making [24], [25].

Existing methods for improving model calibration in med-
ical imaging typically focus on post-hoc techniques, such
as temperature scaling [20] or Dirichlet calibration [26], or
auxiliary loss function, such as MMCE [22] and DCA [25].
While these methods are effective to some extent, they often
introduce additional complexity and may not fully address
the underlying calibration issues. Moreover, they may not
adequately capture the inherent uncertainty associated with
medical imaging tasks, which can arise from factors such as
image quality, patient variability, and model limitations.

To address these challenges, we propose a novel calibration
method that based on probabilistic embedding. Our method
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Fig. 1: Reliability diagrams on the Mendeley dataset show
(a) the Normal model is overconfident in its predictions;
(b) temperature scaling over-compensated model calibration
by making it underconfident in its predictions; (c) and (d)
significantly improves the model calibration.

models uncertainty utilizing Gaussian distributions. Instead of
predicting a point estimate for a given sample, our method
predicts a Gaussian blob, with the mean representing the
predicted label and the variance indicating the uncertainty. By
embedding the model’s predictions into a probabilistic space,
our method effectively quantifies the uncertainty associated
with each prediction, leading to more calibrated and inter-
pretable results.

The rest of this paper is organized as follows. We first
provide the necessary background of neural network miscali-
bration (Section II), followed by a detailed introduction of our
proposed probabilistic embedding approach and its theoretical
underpinnings (Section III). We then present the evaluation
results and compare our method to existing calibration tech-



niques (Section IV). Finally, we conclude with a discussion
and outline future research directions (Section V).

II. BACKGROUND

A. Neural Network Calibration
1) Problem Definition: Mathematically, the problem of

model calibration can be defined in the following way. Let the
input x ∈ X and label y ∈ Y = {1, ..., k} be random variables
that follow a joint distribution π(x, y) = π(y|x)π(x). Let h(·)
be a deep neural network with h(x) = (ŷ, p̂), where ŷ is the
predicted class label and p̂ is the associated confidence. We
would like the confidence estimate p̂ to be calibrated, which
intuitively means that p̂ represents a true probability, p. The
perfect calibration can be defined as:

P (ŷ = y|p̂ = p) = p,∀p ∈ [0, 1]. (1)

For instance, given 100 predictions with the average P̂ =
0.95 from a perfect calibrated model, we expect that 95
predictions should be correct. In reality, the average confidence
of a deep neural network is often higher than its accuracy [20]–
[22]. The difference in expectation between confidence and
accuracy (i.e., the calibration error) can be defined as:

Ep̂ [|(ŷ = y|p̂ = p)− p|] . (2)

2) Measurement: Expected Calibration Error (ECE) [27]
is a commonly used criterion for measuring neural network
calibration error that approximates Equation (2) by partitioning
predictions into M bins and taking a weighted average of the
difference between the accuracy and confidence for each bin.
To calculate ECE, all the samples need to be grouped into M
interval bins according to the predicted probability. Let Bm

be the set of indices of samples whose predicted confidence
falls into the interval Im = (m−1

M , m
M ], m ∈ M . The accuracy

of Bm is

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (3)

where ŷi and yi are the predicted and ground-truth labels for
sample i. The average predicted confidence of bin Bm can be
defined as

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (4)

where p̂i is the confidence of sample i. ECE can be defined
with acc(Bm) and conf(Bm)

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (5)

where n is the number of samples.
Maximum Calibration Error (MCE) [27] is another common

criterion for measuring neural network calibration error that
partitions predictions into M equally-spaced bins and esti-
mates the worst-case scenario. MCE can be computed as:

MCE = max
m∈{1,...,m}

|acc(Bm)− conf(Bm)|. (6)

Unlike ECE, MCE is known as sensitive to the number of
bins [20], [25].

B. Existing Method

The existing calibration methods may be grouped into
three broader categories, namely post-hoc processing, auxiliary
regularization loss, and uncertainty estimation. Our proposed
method can be considered as the third category. This section
provides the basic introduction to all the three categories.

1) Post-hoc Processing: Post-hoc calibration techniques
are methods designed to improve the calibration of machine
learning models after training is complete. These approaches
aim to adjust the model’s predicted probabilities to better align
with the true probabilities of the target classes.

One of the most widely-used post-hoc approaches for neural
network model calibration is temperature scaling [20], [28],
which addresses miscalibration by dividing the logits by a
temperature parameter, T .

Temperature scaling typically involves two steps: 1) model
training and 2) learning the T . Once the model is trained, T
is added and optimized on a validation set while all other
model parameters remain fixed. This optimization process
aims to find the optimal temperature value that improves the
calibration of the model’s predictions [20].

Once the optimal temperature value is found, the tempera-
ture parameter will be used for calibration at the testing time.
The calibrated confidence, q̂i, using temperature scaling is

q̂i = max
k

θSM (
zi
T
)(k), (7)

where k is the class label (k = 1, ...,K), θSM (zi) is the pre-
dicted confidence. As T → ∞, the confidence q̂i approaches
the minimum, which indicates maximum uncertainty.

Temperature scaling is easy to use and performs well. How-
ever, as a post-processing technique, temperature scaling does
not directly contribute to feature learning. Ideally, a neural
network model should be capable of self-calibration without
requiring external adjustments like temperature scaling [29].

2) Auxiliary Losses: To improve model calibration during
training, auxiliary regularization losses can be incorporated
into the negative log-likelihood (NLL) loss function. The
combined loss can be expressed as:

Loss = NLL + βAuxiliary Loss, (8)

where β is a weight scalar and Auxiliary_Loss is the
regularization loss for calibration, which may have multiple
options, such as entropy [21], MMCE [22], DCA [25], etc.

MMCE is computed in a reproducing kernel Hilbert space
(RKHS) [30]. The completely loss function can be written as:

MMCE =
∑
i,j∈D

(ŷi − p̂i)(ŷj − p̂j)k(p̂i, p̂j)

m2
, (9)

where D denotes a dataset and k(., .) is a universal kernel
[31]. While MMCE can be effective, its performance may be
limited by imbalanced predictions from the neural network.

DCA is based on the expected calibration error (Equation 2)
and directly minimizes the difference between predicted confi-



Fig. 2: Illustration of the proposed method for both training (top) and inference (bottom).

dence and accuracy. The DCA term can be computed for each
mini-batch using the following equation:

DCA =

∣∣∣∣∣ 1N
N∑
i=1

ci −
1

N

N∑
i=1

p(ŷi)

∣∣∣∣∣ , (10)

where ci = 1, if ŷi = yi; otherwise, ci = 0.
While auxiliary losses can enhance both calibration and

overall model performance, it is crucial to carefully select
the weight scalar (β) associated with the auxiliary loss. An
inappropriate weight can lead to suboptimal calibration or even
hinder the model’s performance. The optimal weight scalar
may vary depending on the specific task and dataset, requiring
intensive experimentation and hyperparameter tuning.

3) Uncertainty Estimation: Enhancing a model’s uncer-
tainty estimation ability can also contribute to improved
calibration. Label smoothing [32] was initially proposed to
enhance the classification performance of the Inception ar-
chitecture. Müller et al. demonstrated that label smoothing
can implicitly calibrate models by introducing a degree of
uncertainty into the training process [33].

Instead of targeting a hard probability of 1.0 for the correct
class, label smoothing aims to predict a softer version:

yLS
k = yk(1− α) +

α

K
, (11)

where yk is original targeting probability (i.e., yk = 1.0 for
the correct class and yk = 0.0 for the rest), K is the number
of class labels, α is a hyperparameter that smooths the target.

Mixup [34] is another method that encourages softer target
predictions by randomly mixing training samples. During

training, two samples from different classes are combined, and
the network is required to predict the combined probability of
the corresponding labels. The target probabilities are propor-
tional to the pixel contributions from each image. Thulasidasan
et al. [35] have shown that Mixup can also be beneficial for
neural network calibration.

Our proposed method can be considered a member of
this category, as it also focuses on improving calibration by
introducing uncertainty into the training process.

III. METHOD

A. Architecture Overview

This section provides a detailed introduction of the proposed
method that enhances calibration through modeling neural net-
work’s uncertainty using Gaussian distribution (Section III-B).
Figure 2 shows the overview of the proposed method for both
training (top) and inference (bottom).

Given an input image, x, with a target label y, we first
perform a random crop, x′, of the image during training.
The cropped image x′ is then used as input to a deep neural
network, h(·). Since the x′ is derived from x, it inherits the
target label of x. However, due to the partial nature of the
crop, h(x′) should exhibit higher uncertainty than h(x). An
uncertainty label, yc, for x′ can be determined based on the
random crop size and location (Section III-C).

The model h(·) comprises a feature extractor and two
prediction heads: one for estimating the mean (µ) and the
other for estimating the variance (σ2) of a Gaussian distribu-
tion. The optimization of h(·) aims to minimize the distance



between µ and y while simultaneously pushing σ2 towards yc
(Section III-D).

During inference, the entire input image, without cropping,
is used as input to h(·). The prediction head for σ2 is removed,
and the predicted µ is used as the final predicted label.

B. Uncertainty Modeling through Gaussian Distribution

Traditionally, deep neural networks are trained to predict
a point estimate for a given sample. For example, when
presented with an image of a cat, a model is expected to predict
whether the image indeed depicts a cat. While these models
are optimized for accuracy, they often neglect to explicitly
estimate the uncertainty associated with their predictions,
leading to potentially inaccurate confidence scores. Instead of
predicting a point estimation, we propose a novel approach
that models the neural network outputs as Gaussian blobs
centered around the predicted label. The size of the Gaussian
blob represents the model’s uncertainty, with smaller blobs
indicating lower uncertainty in the prediction.

Given an input x and the target y, our goal is to let the
model h(·) output a Gaussian distribution, N (µ, σ2), where
µ and σ2 are the mean and variance, respectively. Ideally, the
distribution should be centered around the target label, i.e.,
the output of h(x) should be N (y, σ2). The variance indicates
the model’s uncertainty, with a smaller σ2 suggesting lower
uncertainty in the prediction.

A perfect model would have µ = y and σ2 = 0, resulting
in a point distribution N (y, 0). As σ increases, the Gaussian
distribution becomes wider and flatter, indicating higher uncer-
tainty. When σ2 approaches infinity, the distribution becomes
completely flat, suggesting a random model that is unable to
make informative predictions beyond random guessing.

To simplify the problem and ensure a practical range of
uncertainty, we impose a constraint on the estimated variance,
limiting it between 0 and 1. This constraint helps to prevent
the model from producing overly uncertain predictions that
might be difficult to interpret or use for decision-making.

C. Uncertainty Label Generation

For a random crop x′ of the input image x, the uncertainty
label can be determined based on the crop size and location.
Let h and w are the width and height of x, respectively, while
h′ and w′ are the width and height of x′.

The uncertainty regarding crop size, σs can be assessed
relative to the proportion of the crop. We first define the
certainty of the crop, denoted as certaintys:

certaintys =
h′ × w′

h× w
. (12)

Consequently, the uncertainty σs can be calculated as:

σs = 1− certaintys = 1− h′ × w′

h× w
. (13)

Assuming all inputs are resized to a square before cropping,
and the crop is always square, Equation 13 simplifies to:

σs = 1− s′2

s2
, (14)

where s is the side length of the resized x and s′ is the side
length x′.

The σs calculation assumes that all pixels in an image
contribute equally to decision-making. However, this might not
be accurate, as pixels near the edges in medical images may
contain less information or even no information (e.g., edge
pixels in x-ray images might be outside the patient’s body).
Therefore, we need to consider the crop’s location to generate
a more accurate uncertainty label.

We assume that pixels closer to the center of the image carry
more information. Thus, the certainty of the crop considering
location, certaintyl can be defined as:

certaintyl = (1− d

s/2
)× certaintys, (15)

where d is the Chebyshev distance from the pixel to the center
of x.

The overall uncertainty (σ) can be calculated as:

σ =1− certaintyl

1− (1− d

s/2
)× certaintys

1− (1− d

s/2
)× (1− σs)

d

s/2
+ (1− d

s/2
)× σs,

(16)

which is bounded between 0 and 1.

D. Model Training and Loss Functions

Given an input image, x, and the target label y, our goal is to
optimize the model h(·) to minimize the distance between the
predicted mean (µ) of the Gaussian distribution and the target
label (y) while simultaneously pushing the predicted variance
(σ2) towards the uncertainty label (yc). This can be achieved
by combining two loss functions:

LNNL = −
N∑
i=1

yi log(µi) + (1− yi) log(1− µi) (17)

and

LMAE =
1

N

N∑
i=1

|yci − σ2
i |, (18)

where N is the number of training samples.
The Equation 17 is the NLL loss that encourages the model

to predict a mean that is centered around the ground-truth
label, while Equation 19 is the mean absolute error (MAE)
loss that pushes the variance towards the uncertainty label.

The overall loss can be written as:

L = αLNLL + βLMAE , (19)

where α and β are two weighting scalars. By jointly minimiz-
ing NLL and MAE loss functions, we can effectively train the
model to both accurately predict the target label and provide
reliable uncertainty estimates.



(a) (b)

Fig. 3: Examples from the Kather (left) and Mendeley (right)
datasets.

IV. EXPERIMENTS

We evaluate the performance of the proposed model using
publicly available medical imaging datasets for two types of
images—histological images and radiology images. The for-
mer one is for RGB images, and the latter one is for gray-scale
images. Thirty-two neural network models of six methods
for two types of classification tasks—binary classification and
multi-class classification—are trained and compared over the
two datasets. We denote the six methods as follows:

• Normal: the normal CNN models trained with NLL;
• TS: the Normal model with temperature scaling;
• OursR: the proposed method with the fixed α and β

weighting the two components of the loss function;
• OursR-TS: OursR model with temperature scaling;
• OursDW: the proposed method with an automatic weight-

ing strategy for selecting α and β automatically;
• OursDW-TS: applying temperature scaling to OursDW.

A. Experiment Setup

1) Dataset: The Kather dataset [36] contains 5000 histo-
logical images of 150 × 150 pixels (Figure 3a). Each image
belongs to exactly one of eight tissue categories: tumor epithe-
lium, simple stroma, complex stroma, immune cells, debris,
normal mucosal glands, adipose tissue, and background (no
tissue). All images are RGB, 0.495µm per pixel, digitized with
an Aperio ScanScope (Aperio/Leica biosystems), magnifica-
tion 20×. Histological samples are fully anonymized images
of formalin-fixed paraffin-embedded human colorectal adeno-
carcinomas (primary tumors) from the Institute of Pathology,
University Medical Center Mannheim, Heidelberg University,
Mannheim, Germany. The dataset was randomly partitioned
into training and testing datasets with a 4 : 1 ratio by us.

The Mendeley dataset [37] contains both the optical coher-
ence tomography (OCT) images of the retina and pediatric
chest X-ray images. We used the pediatric chest X-ray images
(Figure 3b) in this study. The dataset includes 4273 pneumonia
images and 1583 normal images. We used the provided
training and testing sets in this study.

2) Implementation: We implemented the proposed method
using ResNet-50 [38] as the backbone that was pre-trained
on ImageNet [39]. Specifically, all the convolutional (Conv)

layers of the ResNet-50 model were used as the feature
extractor. Two prediction heads were added on top of the
feature extractor, each had a 1×1 Conv layer, a global average
pooling layer, and a fully connected layer. The batch size was
set as 64. The stochastic gradient descent (SGD) optimizer
with a learning rate of 5e − 3 and a momentum of 0.9 was
used to optimize the model parameters. The learning rate was
reduced by half when the model was plateaued for 5 epochs.

The weights for both loss components were 1 (i.e., β = 1
and α = 1) for OursR. The α and β were dynamically selected
for OursWD and OursWDTS that balance the loss of the two loss
components (i.e., NLL and MAE) to the same range.

Two random cropping strategies were used for all of our
models, namely Mild strategy and Radical. The Mild strategy
generated the crop x′ as the 65% to 95% of x randomly, while
Radical generated the x′ as the 15% to 45% of x randomly.

All models were trained to converge. The best checkpoint
of each model was used to evaluate the model’s performance.

3) Evaluation Metrics: Six evaluation metrics were used
to assess the performance of each model, namely ECE,
MCE, accuracy (Acc), F1 score (F1), precision, and recall.
Among the six metrics, the first two were used to measure
the calibration errors, with a lower value indicating a better
calibration. The rest were used to evaluate the models’ clas-
sification performance, with a higher value indicating a better
performance. All the evaluated models were trained twice. The
average performance of the two training trials is reported in
this section.

B. Evaluation Results

1) Overall Performance: Table I presents the overall per-
formance of the six evaluated methods. The best performance
for each dataset is highlighted in bold, the second-best in blue,
and the worst in red.

The table demonstrates that our proposed method sig-
nificantly outperforms the baselines in terms of calibration
while also achieving substantial improvements in classification
performance. For example, OursR achieved ECE scores of
0.0135 and 0.0334 on the Kather and Medeley datasets, re-
spectively, representing improvements of 39.46% and 54.31%
compared to the Normal models. Though applying temperature
scaling to Normal significantly improves the calibration of
the model, OursR-TS further enhanced calibration by 3.73%
and 74.28%, respectively. Additionally, with dynamic loss
weighting, OursDW-TS reduced the ECE on the Kather dataset
to 0.0096, surpassing both Normal and TS by 56.95% and
28.36%, respectively.

It is worth noting that our proposed method not only im-
proves model calibration but also boosts classification perfor-
mance. For instance, OursR increased classification accuracy
on Kather by 1.7% from 96% to 97.70% and on Medely by
3.61% from 90.80% to 94.08%.

2) Calibration Visualization: Figure 1 presents the reliabil-
ity diagrams for the Normal, TS, OursR, and OursR-TS models
on the Medeley dataset. These diagrams divide the predicted



TABLE I: Detailed performance of different models on the Kather and Medeley datasets

Dataset Model ImageNet Temperature Uncertainty Dynamic ECE MCE Acc F1 Precision Recall
Pre-Train Scaling Embedding Weighting (↓) (↓) (↑) (↑) (↑) (↑)

Kather

Normal ✓ 0.0223 0.4437
0.9600 0.9600 0.9601 0.9600TS ✓ 0.0134 0.6941

OursR ✓ ✓ ✓ 0.0135 0.5925
0.9770 0.9772 0.9777 0.9770OursR-TS ✓ ✓ 0.0129 0.6560

OursDW ✓ ✓ ✓ 0.0143 0.4352
0.9755 0.9756 0.9747 0.9755OursDW-TS ✓ ✓ ✓ ✓ 0.0096 0.5122

Medeley

Normal ✓ 0.0731 0.4279
0.9080 0.9296 0.8941 0.9692TS ✓ ✓ 0.0552 0.3347

OursR ✓ ✓ 0.0334 0.2580
0.9408 0.9513 0.9158 0.9897OursR-TS ✓ ✓ ✓ 0.0142 0.3110

OursDW ✓ ✓ ✓ 0.0389 0.3515
0.9296 0.9457 0.9149 0.9795OursDW-TS ✓ ✓ ✓ ✓ 0.0326 0.2987

Note: All the proposed models (i.e., OursR, OursR-TS, OursDW, and OursDW-TS) in this table used the mild cropping strategy.

TABLE II: Effect of Weighting Strategy and Cropping Strategy

Dataset Weighting Cropping ECE(↓) MCE(↓) F1(↑)Strategy Strategy

Kather
Fixed Mild 0.0135 0.5925 0.9772

Radical 0.0459 0.3728 0.9409

Dynamic Mild 0.0143 0.4352 0.9756
Radical 0.0255 0.4957 0.8687

Medeley
Fixed Mild 0.0334 0.2580 0.9513

Radical 0.0402 0.2745 0.9412

Dynamic Mild 0.0389 0.3515 0.9457
Radical 0.0440 0.1206 0.8710

probabilities into bins and plot the average predicted confi-
dence against the empirical probability (the actual proportion
of positive outcomes) for each bin. An ideal calibration is
indicated by points closely aligned with the diagonal line.

The larger gaps below the diagonal line in Figure 1a
reveal that the Normal model is overconfident in many of
its predictions. For example, the accuracy of the bin with
confidence of 0.9 is only about 50%, which is significantly
higher than the expected confidence, i.e., 0.5. Temperature
scaling (Figure 1b) improves the Normal model’s calibration
but may over-compensate it, leading to underconfidence as
evidenced by the gaps above the diagonal line.

The OursR model (Figure 1c) demonstrates a much closer
alignment with the diagonal line compared to Normal and
TS, indicating superior calibration. After applying temperature
scaling to our model, OursR-TS (Figure 1d) further brings the
bins even closer to the diagonal line. This suggests that our
models exhibit significantly better calibration overall.

3) Hyperparameter Effects: The proposed method involves
two hyperparameters: 1) the random crop ratio of the image
and 2) the weight scalars for the loss components. To inves-
tigate the effects of the hyperparameters, we conducted an
evaluation of four training strategies, combining two cropping

strategies and two weighting strategies.
• Two Cropping Strategies:

– Mild Cropping: The cropped image, x′, maintains a
size between 65% and 95% of the original image.

– Radical Cropping: The cropped image, x′, maintains
a size between 15% and 45% of the original image.

• Two Weighting Strategies:
– Fixed Weighting: The weights of the loss compo-

nents are fixed with α = 1 and β = 1.
– Dynamic Weighting: The β value is automatically

updated to balance the two loss components.
Table II summarizes the effects of different weighting

and cropping strategies on the two datasets, with the best
performance of each dataset is highlighted in bold, the sec-
ond best performance is highlighted in blue. Among the
six evaluation tasks (ECE, MCE, and F1 score on the two
datasets), the combination of fixed weighting and mild crop-
ping (Fixed+Mild) achieved the best performance in four
cases. Although the dynamic weighting with mild cropping
(Dynamic+Mild) did not attain the absolute best perfor-
mance, it secured five second-best results. The radical cropping
strategy consistently underperformed, except in terms of MCE.

These findings suggest that carefully tuning the weights
for the loss components in conjunction with mild cropping
(Fixed+Mild) can yield the best calibration and perfor-
mance for a given task. However, the Dynamic+Mild strat-
egy also provides acceptable results, especially when consid-
ering the reduced tuning effort and the only marginally lower
classification performance (0.38% on average) compared to
the Fixed+Mild strategy.

V. CONCLUSION

In this paper, we proposed a novel approach to improving
model calibration in medical imaging based on probabilistic
embedding. By embedding the model’s predictions into a
probabilistic space through Gaussian distribution, the proposed



method effectively quantifies the uncertainty associated with
each prediction, leading to more calibrated, interpretable, and
reliable outputs.

Our experimental results demonstrate the effectiveness of
the proposed method in improving model calibration on two
medical imaging tasks. We have also compared our method to
existing calibration techniques and highlighted its advantages
in terms of calibration and accuracy.

Future research directions of this research may include
exploring different probabilistic distributions for modeling
uncertainty, investigating the impact of our approach on down-
stream tasks, and evaluating the performance of our method
for large-scale medical imaging applications.
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