

Multi-Scale Self-Supervised Consistency
Training for Trustworthy Medical Imaging
Classification

Bonian Han¹, Cristian Moran², Gongbo Liang²

¹Hangzhou Dianzi University, Hangzhou, China

² Texas A&M University-San Antonio, San Antonio, TX, USA

Neural network-powered CADs are exciting! But...

Can we trust them in medical practice?

Modern Neural Networks are often poorly calibrated!

Miscalibration = Estimate Uncertainty Wrong

- E.g.,
 - For any binary classification tasks, given 100 predictions with an average confidence of 0.95, we would expect around 95 correct predictions.

$$\mathbb{P}(\widehat{y} = y | \widehat{p} = p) \neq P$$

In reality, a model with 0.95 confidence often has less accuracy than 95%.

 $\mathbb{P}(\hat{y} = y | \hat{p} = p) \neq P$ In reality, a model with 0.95

miscalibrated has less accuracy

Miscalibrated 43%.

Misleading information that might lead to catastrophic consequence

Multi-Scale Self-Supervised Consistency Training for Trustworthy Medical Imaging Classification

Bonian Han¹, Cristian Moran², Gongbo Liang²

¹Hangzhou Dianzi University, Hangzhou, China

² Texas A&M University-San Antonio, San Antonio, TX, USA

Proposed Architecture

Multi-Scale Input Generation

- Generates k subviews of an input image by applying random crops.
- The *k*+1 views, including the original one, are then fed into the shared feature extractor.

Shared Feature Extractor

- A feature extractor is shared between all the k+1 views.
- The k+1 feature maps are fed to the Self-Supervised Consistency Learning module and the Main Predicting Head.

Self-Supervised Consistency Learning

- Contains k+1
 auxiliary prediction
 heads, one for
 each view.
- KL divergence is used as the loss to measure the consistency of the prediction of every two auxiliary heads

Main Predicting Head w/ Modality Encoding

- Modality Encoding
 - A learnable (k+1) x 8
 - Provide information about the views in the multi-scale input set
 - Concatenated with the corresponding feature maps
- The concatenated feature maps are used as input for the final prediction.

Experiment Setup

Dataset

Name	Imaging Modality	# of Image s	# of Classes
Mendeley	Chest X- Ray	5856	2
Kather	Histologic	5000	

Mendeley

Kather

- Architecture
 - ResNet-50
- Evaluation Metrics
 - ECE Expected Calibration Error
 - The most common metric for calibration
 - F1 Score
 - · Precision
 - · Recall

Result -- Mendeley

SINGLE: The ResNet-50 model with Image-Net pre-training

MTSL: The ResNet-50 model with multi-scale input

MTSL-SC: The ResNet-50 model with multi-scale input & self-supervised consistency module

MTSL-ME: The ResNet-50 model with multi-scale input & modality encoding

MTSL-SCME: The proposed model

Result -- Kather

SINGLE: The ResNet-50 model with Image-Net pre-training

MTSL: The ResNet-50 model with multi-scale input

MTSL-SC: The ResNet-50 model with multi-scale input & self-supervised consistency module

MTSL-ME: The ResNet-50 model with multi-scale input & modality encoding

MTSL-SCME: The proposed model

T-SNE for Feature Space Visualization (Kather)

Random Model

Image-Net Pre-Trained ResNet-50 Model

ResNet-50 with Multi-Scale Input

Conclusion

Thank you!

Questions?