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Neural network-powered
CADs are exciting! But...

Can we trust them in medical
practice?
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Modern Neural Networks are often poorly
calibrated!

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. "On calibration of

modern neural networks." In International conference on machine learning, pp.
421 422/ DNMID DO/ 1 7




Miscalibration = Estimate
Uncertainty Wrong

* E.g.,
* For any binary classification tasks, given 100 predictions with
an average confidence of 0.95, we would expect around 95
corvect predictions.
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In reality, a model with 0.95

confidence often has less accuracy
than 95%.
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In reality, a model with 0.95
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provide...

Misleading information that might
lead to catastrophic consequence
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Proposed Architecture

Self-Supervised Consistency Learning
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Multi-Scale Input Generation

 Generates k sub-
views of an input
image by applying gl |
random crops.

* The k+1 views,
including the original

| e M
one, are then fed " ﬁ J‘ |
into the shared :

feature extractor.
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Shared Feature Extractor

» A feature extractor
IS shared between
all the k+1 views.

* The k+1 feature
maps are fed to the

Self-Supervised Consistency Learning

Self-Supervised | -

Consistency " ﬁ J‘ =
Learning module | s e -
and the Main " o

Predicting Head.




Self-Supervised Consistency
Learning

e Contains k+1

auxiliary prediction o |rpmes——
heads, one for e |
each view.

« KL divergence is
used as the loss to

If- rvised
Consistency Loss

| e N ;
measure the " ﬁ J‘ - e
consistency of the ;

(a learnable matrix)

prediction of every
two auxiliary heads




Main Predicting Head w/ Modality

Encoding

* Modality Encoding
* Alearnable (k+1) x 8

* Provide information
about the views in the
multi-scale input set

« Concatenated with
the corresponding
feature maps

* The concatenated
feature maps are
used as input for the
final prediction.

Feature Maps

Self-Supervised Consistency Learning

g

Input Images

Modality Encoding
(a learnable matrix)




Experiment Setup

« Dataset e Architecture
Imaging |# of |# of * ResNet-50
Mendeley Chest X- 5856 e ECE — Ex,aected
— E“i o Calibration Error
e e The most common
metric for
calibration
* F1 Score
* Precision

Mendeley ‘ Katb\er * Recall




Result -- Mendeley
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Result -- Kather
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T-SNE for Feature Space Visualization
(Kather)
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Conclusion
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Thank you!

Questions?



